L'inchiesta andata in onda il 13 aprile 2020 ha trattato l'argomento degli alti livelli di nitrati presenti solo ed esclusivamente nel territorio della Provincia di Brescia, considerato dalla Regione Lombardia zona vulnerabile e in cui è permesso uno spandimento di massimo 170 chili di azoto per ettaro derivanti dai liquami prodotti dagli allevamenti intensivi. Le nostre fonti sono state L'Università di Parma, l'Istituto Superiore per la Protezione e la Ricerca Ambientale e l'Arpa Lombardia.

Grazie al lavoro svolto dal professor Marco Bartoli, - Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale - Università di Parma e Responsabile del Laboratorio di Ecologia Acquatica presso il Podere Ambolana¹, abbiamo documentato che i livelli di azoto trovati sui terreni e nelle falde della provincia di Brescia nella zona dell'Oglio oltrepassano i 500 kg per ettaro eccedendo del triplo le quantità ammissibili in un tratto dove non ci sono depuratori e centri industriali particolari che giustificherebbero questo incremento².

Dei dati riportati dal Prof. Bartoli abbiamo chiesto conto durante l'intervista all'assessore all'agricoltura della regione Lombardia Fabio Rolfi che ha negato ci sia un problema lombardo, cosa che non abbiamo mai messo in discussione, senza mai entrare nello specifico sul caso Bresciano da noi proposto. Di questo abbiamo dato atto nell'intervista con l'assessore senza alterare minimamente il senso delle sue parole.

Oltre alla problematica relativa all'inquinamento in falda c'è quella della qualità dell'aria. Per sviluppare l'argomento abbiamo contattato Istituto Superiore per la Protezione e la Ricerca Ambientale. A **Riccardo de Lauretis (responsabile Ispra per la realizzazione degli inventari nazionali delle emissioni in atmosfera trasmessi nell'ambito delle convenzioni internazionali)** abbiamo chiesto quale impatto avessero gli allevamenti intensivi in Pianura Padana.

dalla puntata di report del 13.4.20 LUCA CHIANCA Se volessimo dare una classifica,gli allevamenti dove li mettiamo per quanto riguarda l'inquinamento, l'impatto che hanno sull'ambiente?

RICCARDO DE LAURETIS -ISTITUTO SUPERIORE DI PROTEZIONE E RICERCA AMBIENTALE

Ex equo, il bacino padano ex equo con il trasporto su strada, la combustione della legna dei caminetti e attività industriale.

Infine per approfondire l'argomento dovuto all'impatto degli allevamenti sulla produzione di Pm10 in Lombardia abbiamo intervistato anche **Guido Lanzani responsabile dell'Unità Organizzativa Qualità dell'Aria presso il settore monitoraggi ambientali della direzione centrale dell'Arpa Lombardia**. Il quale ci ha illustrato come l'ammoniaca presente nei liquami zootecnici dalla stalla, allo stoccaggio allo stoccaggio fino allo spandimento contribuisce alla formazione di Pm10 e Pm2.5.

1

^{1 (}https://personale.unipr.it/it/ugovdocenti/person/17192; https:// www.researchgate.net/profile/Marco_Bartoli)

² Marco Bartoli.pdf

Secondo una presentazione da poco pubblicata da Lanzani, "Il solfato ed il nitrato di ammonio costituiscono anche il 50% della massa totale di PM10 e PM2.5 in aria. Durante gli episodi acuti tale contributo aumenta superando anche al 50% del totale"³

dalla puntata di report del 13.4.20 LUCA CHIANCA quanto incide l'ammoniaca che fuoriesce dagli allevamenti nella formazione del Pm10?

GIUSEPPE LANZANI – ARPA LOMBARDIA gioca un ruolo sicuramente importante soprattutto nelle stagioni dove lo spandimento dei reflui è più importante

LUCA CHIANCA di mucche e maiali.

GIUSEPPE LANZANI – ARPA LOMBARDIA sì reflui

LUCA CHIANCA FUORI CAMPO

secondo i dati di Arpa, in Lombardia 85 per cento dell'ammoniaca deriva dai liquami prodotti degli allevamenti e dalle loro analisi l'ammoniaca è uno dei principali fattori per la formazione del Pm10

LUCA CHIANCA

quello che siete riusciti a osservare è una correlazioni tra lo spandimento e l'aumento del pm10

GIUSEPPE LANZANI – ARPA LOMBARDIA

sì diciamo che si rileva in modo chiaro che la componente inorganica è sicuramente maggiore nei periodi in cui è più alta l'ammoniaca corrispondentemente sono maggiori le attività zootecniche di spandimento dei reflui.

Sempre all'Arpa abbiamo chiesto i dati degli sforamenti di Pm10 nella provincia di Brescia nel mese di febbraio e successivamente abbiamo ottenuto i bollettini della Regione, sempre per quel periodo e in quella zona, che autorizzano gli allevatori a spandere sui terreni liquami nei periodi di blocco invernale. Mettendo insieme i dati abbiamo constatato che alle autorizzazioni a spandere dal 7 al 10 febbraio corrisponde lo sforamento dei livelli di Pm10 del 10 febbraio. Le autorizzazioni dal 14 al 17 febbraio sono accompagnate da sforamenti del 16 e 17 febbraio. Ed infine le autorizzazioni dal 21 al 24 febbraio, hanno nuovi sforamenti intorno al 24 e 25 febbraio 2020.

Solo tre settimane fa, la Società Italiana di Medicina ambientale in collaborazione con l'Università di Bologna e Bari, pubblica un position paper dove si ipotizza come il Pm10 abbia aiutato la diffusione del Coronavirus in Pianura Padana e abbiamo intervistato il presidente e il professore Leonardo Setti del dipartimento chimica industriale dell'Università di Bologna.⁴ Visto il dibattito pubblico che si è acceso sull'ipotesi avanzata da Sima, abbiamo anche **raccolto il punto di vista della Società Italiana**

2

³ v. allegato ARPA Qualità-dellaria-Lanzani

⁴ Position-Paper_Sima

di Aerosol che sostiene che "queste conoscenze sono ancora molto limitate e ciò impone di utilizzare la massima cautela"⁵.

Su tale Position Paper avevamo chiesto via email un parere per iscritto all'Istituto Superiore di Sanità che non ha risposto.

Pubblichiamo lo studio cinese da cui prende spunto l'ipotesi dei ricercatori legati alla Sima in cui l'Università di Pechino e Shanghai in collaborazione con l'Università della California di San Diego ha analizzato tra il 2012 e il 2013 l'aria inquinata di Pechino isolando 106 campioni di Pm2,5 e Pm10 scoprendo che il 4% delle presenze sul particolato era formato da virus. ⁶

Inoltre sempre in questi giorni, all'università TH Chan School of Public Health di Harvard i ricercatori guidati da Francesca Dominici hanno scoperto, analizzando 3080 contee negli Stati Uniti, che laddove l'inquinamento è più diffuso la mortalità aumenta addirittura, per Covid-19, del 15%⁷.

Su questo avevamo raccolto il punto di vista dell'Istituto Superiore in conferenza stampa.

SILVIO BRUSAFERRO -PRESIDENTE ISTITUTO SUPERIORE DI SANITÀ

Questo è uno studio assolutamente solido, è uno studio che mette in correlazione, come abbiamo detto, l'esposizione a Pm 2,5 negli anni tra il 2000 e il 2016 e va a vedere le aree di diffusione laddove si è verificata mortalità, ma anche diffusione del Covid. Certamente anche i ricercatori dell'Istituto lavoreranno su questo tipo di scenario.

⁵ Nota_Informativa_IAS

⁶_____STUDIO CINESE.pdf

⁷ https://projects.iq.harvard.edu/covid-pm

Infine a differenza di quanto diffuso in queste ore da **Fabio Rolfi – assessore** agricoltura Regione Lombardia ed Ettore Prandini - Presidente Coldiretti l'Arpa Lombardia ha realizzato un'**Analisi preliminare della qualità dell'aria in** Lombardia durante l'emergenza COVID-19⁸ da cui emerge che, a fronte di una diminuzione del traffico veicolare, della componente del riscaldamento delle abitazioni e dell'industria, ci sono stati due episodi in cui il Pm10 è stato molto elevato:

- 1. EPISODIO 18-20 MARZO 2020
- 2. EPISODIO 28-29 MARZO 2020

Per poter verificare l'effettiva importanza della componente secondaria e del possibile contributo **del comparto agricolo** nei dati di PM10 e PM2.5 registrati in alcune giornate, l'Arpa ha **analizzato i dati di ammoniaca in 3 stazioni della rete di rilevamento della qualità dell'aria di ARPA**: Bertonico, in provincia di Lodi, in un territorio interessato dalle emissioni derivanti da agricoltura e zootecnia; Corte de' Cortesi, in provincia di Cremona, in diretta prossimità di un'azienda suinicola; Milano Pascal, in città.

"Le figure 4.1 e 4.2 (nello studio ndr) evidenziano in modo chiaro valori di concentrazioni elevati nel periodo in analisi e in alcuni casi, in particolare nei giorni dal 18 al 20 marzo quando sono stati osservati superamenti generalizzati delle concentrazioni di PM10, tra i più alti registrati negli stessi giorni negli anni precedenti. Tali concentrazioni sono state ovviamente più alte a Corte de' Cortesi, intermedie a Bertonico e ben inferiori a Milano".

Risulta evidente l'influenza dell'ammoniaca contenuta nei liquami nella formazione del Pm10. Milano infatti ha concentrazioni più bassa perché più lontana dalle zone degli allevamenti intensivi.

⁸https://www.arpalombardia.it/sites/DocumentCenter/Documents/Aria%20-%20Relazioni%20approfondimento/Analisi%20preliminare%20QA-COVID19.pdf

In diversi bacini idrografici all'interno del bacino del Po (Mincio, Oglio, Adda e Ticino) sono stati effettuati bilanci di massa dell'azoto utilizzando dati ufficiali relativi alle consistenze zootecniche, all'uso dei fertilizzanti di sintesi e alle rese colturali. Un bilancio di massa è il confronto tra gli apporti (fertilizzanti organici e di sintesi, azoto fissazione biologica) e le rimozioni (quanto viene assimilato dalle colture o quanto viene perso in atmosfera). Se il bilancio è in equilibrio il rischio di contaminazione delle acque superficiali o di falda è minimo, se il bilancio è positivo gli apporti superano la domanda e l'eccesso di azoto può inquinare le acque superficiali e profonde. I diversi bilanci indicano che il bacino del fiume Oglio sublacuale (che ospita comuni delle province di Brescia, Bergamo, Cremona e Mantova) è quello caratterizzato dall'eccesso maggiore di azoto. Nella tabella è riportato il bilancio di massa effettuato con il dataset più recente (2014). La mole di dati necessaria per questi calcoli è considerevole e gli stessi non sono aggiornati annualmente, vanno considerati quindi come dati recenti.

I dati sono espressi in tonnellate di azoto per anno:

	OGLIO
Reflui zootecnici	48465
Fertilizzanti sintetici	22764
Fissazione biologica	10272
Deposizioni atmosferiche	2107
Σinput	83608
Asportazione delle colture	45457
Denitrificazione nei suoli	7123
Volatilizzazione di NH ₃	7541
Σoutput	14793
Bilancio	23489

Questo bacino idrografico ha una eccedenza azotata stimata in circa 24000 tonnellate per anno.

La voce dominante tra gli input è rappresentata dai reflui zootecnici (57%).

Il fiume Oglio nello stesso anno ha veicolato al Po circa 30000 tonnellate di azoto, addirittura superiori al surplus stimato. Questo indica che i dati di bilancio (il surplus) sono probabilmente sottostimati.

L'apporto civile, non riportato, è dell'ordine del 5% rispetto ai carichi riconducibili alle attività agricole.

Qualità dell'aria ed agricoltura

Guido Lanzani

Resp. U.O. Qualità dell'Aria Settore Monitoraggi Ambientali ARPA Lombardia g.lanzani@arpalombardia.it

14/02/2020

Il bacino padano

- La pianura padana è chiusa su 3 lati da montagne
- Le condizioni meteorologiche sono spesso sfavorevoli alla dispersione
- Il ristagno degli inquinanti sul bacino rende poco efficaci le azioni locali mentre è necessario agire su tutta la pianura
- Particolarmente importante sono le reazioni tra le sostanze presenti nel bacino

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020

PM10 – numero giorni superamento 50 μ g/m³ anno 2019

 Sopra il limite in numerose stazioni della Lombarda, benché in un trend di progressivo miglioramento su base pluriennale

Emissioni di ammoniaca ed impatto sulla qualità dell'aria

Il solfato ed il nitrato di ammonio costituiscono anche il 50% della massa totale di PM10 e PM2.5 in aria Durante gli episodi acuti tale contributo (in azzurro e blu) aumenta superando anche al 50% del totale.

Durante l'episodio critico, il contributo di solfato e nitrato di ammonio (secondario inorganico) cresce superando anche il 50% del totale di PM10 nelle giornate con le concentrazioni più alte. 11

PM10 – L'importanza del secondario inorganico

11

Milano composizione di PM Media annuale – stazioni di background

La parte di secondario inorganico deriva da reazioni tra ossidi di zolfo, ossidi di azoto ed ammoniaca

Le emissioni per macrosettore in Lombardia

Macrosettore	NOx	NH ₃	PM10 Primario	
Produzione energia e raffinerie	5 %	0,01 %	1 %	
Riscaldamento	9 %	0,2 %	43 %	
Combustione nell'industria	17 %	0,4 %	9 %	
Processi produttivi	1 %	0,04 %	3 %	
Uso di solventi	0,05 %	0,1 %	6 %	
Trasporto su strada	54 %	1 %	25 %	
Altre sorgenti mobili e macchinari	11 %		3 %	
Trattamento e smaltimento rifiuti	3 %	1 %	0.2 %	
Agricoltura	1 %	98 %	6 %	
Altre sorgenti e assorbimenti	0,1 %	0,01 %	4 %	

Fonte: INEMAR - ARPA Lombardia (2017), INEMAR, Inventario Emissioni in Atmosfera: emissioni in regione Lombardia nell'anno 2014 ARPA Lombardia Settore Monitoraggi Ambientali.

Le emissioni per macrosettore nel bacino padano

Settore	NOx	NH ₃	PM10 Primario	NMVOC
Produzione di energia e raffinerie	6%	0%	1%	0%
Combustione residenziale	9%	0%	56%	5%
Combustione in ambito industriale	15%	0%	4%	1%
Processi produttivi	3%	0%	3%	4%
Estrazione e distribuzione carburanti	0%	0%	0%	2%
Uso dei solventi	0%	0%	5%	28%
Trasporto su strada	50%	1%	20%	6%
Altre sorgenti mobili	13%	0%	4%	1%
Trattamento e smaltimento rifiuti	1%	1%	0%	0%
Agricoltura	1%	97%	4%	22%
Altre sorgenti e assorbimenti	0%	0%	3%	31%

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020 Fonte: Life project PREPAIR

Densità di emissione di ammoniaca nel bacino padano (con Slovenia)

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020 Fonte: Life project PREPAIR

15

Contributo percentuale dei diversi settori agricoli e forestali in Lombardia

Fonte: INEMAR2014

Emissioni di ammoniaca dalla gestione dei reflui in Lombardia (Elaborazione ARPA su dati SIARL e ISTAT)

Abbiamo conferme di tutto ciò? Il monitoraggio dell'ammoniaca in Lombardia con stazioni fisse

In blu stazioni fisse (11) In rosso approfondimenti progetto Ammoniaca

Il monitoraggio dell'ammoniaca in Lombardia 2007-2018

Concentrazioni di NH3 misurate dalla RRQA [µg/m³]	Bertonico	Colico	Corte de Cortesi	Cremona - Via Fatebenefratelli	Cremona - via Gerre Borghi	Milano - Pascal	Moggio	Monza Parco	Pavia	Sannazzaro de' Burgondi	Schivenoglia
Media	30.2	4.2	56,3	7.5	14.3	9.9	2.7	8,5	8.9	8.5	16.0
Deviazione standard	22.1	3.3	55,6	6.3	17.0	6.1	2.7	8.0	6.3	5.9	19.0
98° percentile	94.6	12.7	222.4	25.7	51.5	25.9	9.3	28.6	25.3	23.0	45.4
Massimo rilevato	433.9	58.7	710.0	84.2	463.8	99.2	21.5	238.9	61.7	66.2	741.8
Ore dati [h]	75272	36733	96899	61070	57876	79378	82685	31495	26833	26533	42403

Tabella 5: statistiche elaborate dalle rilevazioni orarie di concentrazione di ammoniaca dal 2007 al 2018.

A Corte dei Cortesi media di 56.3 ug/m3, a Milano 9.9 ug/m3

In siti interessati da emissioni di origine agricola, valori molto superiori che altrove

Il monitoraggio dell'ammoniaca in Lombardia: medie NH3 2007-2018

In siti interessati da emissioni di origine agricola, valori molto superiori che altrove I massimi si registrano nei mesi di febbraio – marzo e da fine settembre a fine ottobre

Quali sono le concentrazioni di ammoniaca presso le aziende agricole?

Figura 16: ubicazione dei punti di monitoraggio per la caratterizzazione del sito di Arzago d'Adda: Cascina Ravaiola (a sinistra) e l'area dell'impianto a biogas (a destra).

Quali sono le concentrazioni di ammoniaca presso le aziende agricole?

Tabella 6: stazioni di monitoraggio del sito di Arzago d'Adda e risultati per ogni stazione (espressi come media ± deviazione standard tra le repliche)

		Concentrazioni NH₃ (µg/m³)			
Stazione	Caratteristica di interesse	Media (circa 3-4	Media (circa 24		
		ore)	ore)		
А	Fondo, sopravento al sito	28.3±2.9	33.6±1.2		
С	Area carico liquame	738.4±39.6	861.9±20.3		
D	Area stoccaggio digestato	187.6±13.7	117.6±10.5		
E	Ricovero bovini e stoccaggio liquame	508.0±70.1	599.0±45.3		
F	Area stoccaggio liquame	376.8±120.0	224.0±14.2		

(

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020 100 m

Fonte: Progetto Ammoniaca, collaborazione Regione Lombardia – ARPA

80 m

Campo agricolo oggetto di spandimento durante la campagna di monitoraggio presso Arzago d'Adda. Nelle figure sono mostrati le porzioni di terreno soggette a spandimento superficiale (in rosso) e quelle oggetto di spandimento interrato (in verde); sono indicate, inoltre, le posizioni delle stazioni di campionamento passivo installate.

1° monitoraggio 17.5.18

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020

Fonte: Progetto Ammoniaca, collaborazione Regione Lombardia - ARPA

Campo agricolo oggetto di spandimento durante la campagna di monitoraggio presso Arzago d'Adda. Nelle figure sono mostrati le porzioni di terreno soggette a spandimento superficiale (in rosso) e quelle oggetto di spandimento interrato (in verde); sono indicate, inoltre, le posizioni delle stazioni di campionamento passivo installate.

2° monitoraggio 25-26.9.18

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020

Fonte: Progetto Ammoniaca, collaborazione Regione Lombardia - ARPA

Concentrazione NH₃ stimata [µg/m³] (espressa come media ± dev. standa							
<u>l mon</u>	itoraggio	II monitoraggio					
Spandimento interrato	Spandimento superficiale	Spandimento interrato mattina	Spandimento interrato pomeriggio	Spandimento superficiale			
86.7 : 9.3	735.6 ± 205.8	345.0 : 160.5	343.7)± 161.1	1212.8 ± 152.0			
47.6 ± 3.1	59.4 ± 8.5	23.3 ± 9.9	17.6 ± 2.8	158.6 ± 26.9			
28.1 ± 2.3	51.8 ± 4.8	16.1 ± 0.6	34.6 ± 1.2	141.8 ± 5.6			
31.9 ± 2.8	_	14.6 ± 0.8	28.7 ± 1.4	78.3 ± 4.1			
	Concentrazio <u>I mon</u> Spandimento interrato 86.7 : 9.3 47.6 ± 3.1 28.1 ± 2.3 31.9 ± 2.8	Concentrazione NH3 stimataI monitoraggioSpandimento interratoSpandimento superficiale86.79.3735.6±47.6±3.159.4±28.1±2.351.8±31.9±2.8-	Concentrazione NH3 stimata [μ g/m³] (espress I monitoraggioI monitoraggioSpandimento interratoSpandimento superficialeSpandimento interrato mattina86.79.3 $735.6 \pm$ 205.8 $345.0 \pm$ 160.547.6 \pm 3.159.4 \pm 8.523.3 \pm 9.928.1 \pm 2.351.8 \pm 4.816.1 \pm 0.631.9 \pm 2.8 $-$ 14.6 \pm 0.8	Concentrazione NH3 stimata [μ g/m³] (espressa come media ±I monitoraggioSpandimento superficialeSpandimento interrato mattinaSpandimento interrato pomeriggio86.79.3 735.6 ± 205.8 345.0 ± 160.5 343.7 ± 161.1 47.6 ± 3.1 59.4 ± 8.5 23.3 ± 9.9 17.6 ± 2.8 28.1 ± 2.3 51.8 ± 4.8 16.1 ± 0.6 34.6 ± 1.2 31.9 ± 2.8 $ 14.6 \pm 0.8$ 28.7 ± 1.4			

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020

Fonte: Progetto Ammoniaca, collaborazione Regione Lombardia - ARPA

E' utile ridurre le emissioni di ammoniaca?

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020

da: AIR QUALITY INFLUENCE OF AMMONIA AND NITROGEN OXIDES EMISSIONS REDUCTION OVER THE PO VALLEY Angelino et al, Air Quality 2014, Garmisch-Partenkirchen, 24-28 March 2014 E' utile ridurre le emissioni di ammoniaca?

Qualità dell'aria e agricoltura, Guido Lanzani, 14.2.2020 da: AIR QUALITY INFLUENCE OF AMMONIA AND NITROGEN OXIDES EMISSIONS REDUCTION OVER THE PO VALLEY Angelino et al, Air Quality 2014, Garmisch-Partenkirchen, 24-28 March 2014

Cosa ci si attende dalle misure del PRIA – d.g.r. n. 449 del 2.8.18

AMBITO	DESCRIZIONE – principali misure comparto agricolo	Riduzioni attese 2025 NH3 (t/a)
Stabulazione	Risparmio del 30% delle emissioni nella fase di stabulazione degli allevamenti AIA, ipotizzando una attuazione al 72% dei suini e dell'80% degli avicoli di tutta la Lombardia.	3 730
Stoccaggi	Risparmio di emissioni dalla fase di stoccaggio di tutti i reflui zootecnici della Lombardia, ipotizzando l'applicazione a cascata di tecniche di copertura e/o gestione del refluo. 20% coperture con efficienza all'80%, formazione della crosta per reflui bovini con efficienza al 40%, attuazione di modalità di carico all'80% dei reflui con efficienza al 20%.	14 351
Spandimenti	Risparmio di emissioni in fase di spandimento, limite orario agli spandimenti con efficienza al 45% con attuazione al 60%, attuazione per il 20% delle emissioni di tecniche di iniezione con efficienza all'80%.	6 401
Spandimenti- agricoltura conservativa	Risparmio di emissioni in fase di spandimento collegabili alle superfici interessate. 5% della SAU per aumento della resa del 10% e 0,16% della SAU con efficienza all'80% per iniezione.	89

Complessivamente, l'obiettivo è passare da 102.086 t/a del 2015 a 75.637 t/a nel 2025

Conclusioni 1/2

- Benché in miglioramento, le concentrazioni di particolato superano in modo diffuso lo standard sul numero di giorni oltre al limite di 50 μg/m³
- L'analisi della composizione del particolato evidenzia un contributo importante del «secondario inorganico», che può raggiungere e superare la metà del totale del PM10 presente in aria
- Il secondario inorganico si forma in atmosfera a partire da ossidi di zolfo, ossidi di azoto e ammoniaca
- Secondo i dati dell'inventario delle emissioni, la gran parte delle emissioni di ammoniaca in Lombardia e nel bacino padano è di origine agricola e zootecnica

Conclusioni 2/2

- Le misure di ammonica effettuate dalle stazioni fisse della rete di ARPA Lombardia evidenziano un chiaro legame tra ammoniaca e sorgente agricoltura
- Le misure effettuate durante campagne di approfondimento evidenziano concentrazioni di ammonica molto più elevate in prossimità delle sorgenti agricole
- E' però possibile ridurre tali emissioni, agendo a più livelli. Il caso dell'interramento dei reflui è significativo.
- Il Piano Regionale Interventi per la Qualità dell'Aria prevede una riduzione delle emissioni di ammoniaca del settore agricolo di circa il 25% con interventi su stabulazione, stoccaggio e spandimento che può contribuire in modo significativo a ridurre il particolato in aria

Grazie per l'attenzione

27

POSITION PAPER

Relazione circa l'effetto dell'inquinamento da particolato atmosferico e la diffusione di virus nella popolazione

Leonardo Setti - Università di Bologna Fabrizio Passarini - Università di Bologna Gianluigi de Gennaro - Università di Bari Alessia Di Gilio - Università di Bari Jolanda Palmisani - Università di Bari Paolo Buono - Università di Bari Gianna Fornari - Università di Bari Maria Grazia Perrone- Università di Milano Andrea Piazzalunga - Esperto Milano Pierluigi Barbieri - Università di Trieste Emanuele Rizzo - Società Italiana Medicina Ambientale Alessandro Miani - Società Italiana Medicina Ambientale

ELEMENTI DI CONOSCENZA SCIENTIFICA

Riguardo agli studi sulla diffusione dei **virus** nella popolazione vi è una solida letteratura scientifica che correla l'incidenza dei casi di infezione virale con le concentrazioni di particolato atmosferico (es. $PM_{10} e PM_{2,5}$) (1, 2).

È noto che il **particolato atmosferico** funziona da *carrier*, ovvero da vettore di trasporto, per molti contaminanti chimici e biologici, inclusi i virus. I virus si "attaccano" (con un processo di coagulazione) al particolato atmosferico, costituito da particelle solide e/o liquide in grado di rimanere in atmosfera anche per ore, giorni o settimane, e che possono diffondere ed essere trasportate anche per lunghe distanze.

Il particolato atmosferico, oltre ad essere un *carrier*, costituisce un **substrato** che può permettere al virus di rimanere nell'aria in condizioni vitali per un certo tempo, nell'ordine di ore o giorni. Il tasso di inattivazione dei virus nel particolato atmosferico dipende dalle condizioni ambientali: mentre un aumento delle temperature e di radiazione solare influisce positivamente sulla velocità di inattivazione del virus, un'umidità relativa elevata può favorire un più elevato tasso diffusione del virus cioè di virulenza (3).

Nel caso di precedenti casi di contagi virali, le ricerche scientifiche hanno evidenziato alcune caratteristiche della diffusione dei virus in relazione alle concentrazioni di particolato atmosferico. Di seguito alcuni risultati e conclusioni:

(2010) l'influenza aviaria può essere veicolata per lunghe distanze attraverso tempeste asiatiche di polveri che trasportano il virus. I ricercatori hanno dimostrato che vi è una correlazione di tipo esponenziale tra le quantità di casi di infezione (Overall Cumulative Relative Risk RR) e le concentrazioni di PM₁₀ e PM_{2.5} (µg m⁻³) (4)

- (2016) esiste una relazione tra la diffusione del virus respiratorio sinciziale umano (RSV) nei bambini e le concentrazioni di particolato. Questo virus causa polmoniti in bambini e viene veicolato attraverso il particolato in profondità nei polmoni. La velocità di diffusione del contagio (Average RSV positive rate %) è correlata alla concentrazione di $PM_{10} e PM_{2.5}$ (µg m⁻³) (5).

- (2017) il numero di casi di morbillo su 21 città cinesi nel periodo 2013-2014 varia in relazione alle concentrazioni di $PM_{2.5}$. I ricercatori dimostrano che un aumento delle concentrazioni di $PM_{2.5}$ pari a 10 µg/m³ incide significativamente sull'incremento del numero di casi di virus del morbillo (6). I ricercatori suggeriscono di ridurre le concentrazioni di $PM_{2.5}$ per ridurre la diffusione dell'infezione.

 (2020) uno dei maggiori fattori di diffusione giornaliera del virus del morbillo in Lanzhou (Cina) sono i livelli di inquinamento di particolato atmosferico (7). In relazione all'evidenza che l'incidenza del morbillo sia associata all'esposizione a PM_{2.5} ambientale in Cina, i ricercatori suggeriscono che politiche efficaci di riduzione dell'inquinamento atmosferico possono ridurre l'incidenza del morbillo.

Environmental Science and Pollution Research		
https://doi.org/10.1007/s11356-020-07903-4		
RESEARCH ARTICLE		
The effects of air pollution and meteo cases in Lanzhou, China	Check for updates	
Lu Peng ^{1,2} • Xiuge Zhao ^{1,2,3} • Yan Tao ^{1,2} • Shengquan M	i ⁴ • Ju Huang ^{1,2} • Qinkai Zhang ⁵	
Received: 23 October 2019 / Accepted: 27 January 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020		

Sulla base di questa sintetica introduzione e rassegna scientifica, storicamente ricostruita, si può quindi dedurre che il particolato atmosferico (PM_{10} , $PM_{2.5}$) costituisce un efficace vettore per il trasporto, la diffusione e la proliferazione delle infezioni virali.

UNA PRIMA ANALISI SULLA DIFFUSIONE DEL COVID-19 IN ITALIA IN RELAZIONE AI SUPERAMENTI DEI LIMITI DI PM_{10}

Per valutare una possibile correlazione tra i livelli di inquinamento di particolato atmosferico e la diffusione del COVID-19 in Italia, sono stati analizzati per ciascuna Provincia:

- i dati di concentrazione giornaliera di PM₁₀ rilevati dalle Agenzie Regionali per la Protezione Ambientale (ARPA) di tutta Italia. Sono stati esaminati i dati pubblicati sui siti delle ARPA relativi a tutte le centraline di rilevamento attive sul territorio, considerando il numero degli eventi di superamento del limite di legge (50 µg m⁻³) per la concentrazione giornaliera di PM10, rapportato al numero di centraline attive per Provincia (**n**° **superamenti limite PM10 giornaliero/n**° **centraline Provincia**)

- i dati sul **numero di casi infetti da COVID-19** riportati sul sito della Protezione Civile (COVID-19 ITALIA)

In particolare si evidenzia una relazione tra i superamenti dei limiti di legge delle concentrazioni di PM_{10} registrati nel periodo 10 Febbraio-29 Febbraio e il numero di casi infetti da COVID-19 aggiornati al 3 Marzo (considerando un ritardo temporale intermedio relativo al periodo 10-29 Febbraio di 14 gg approssimativamente pari al tempo di incubazione del virus fino alla identificazione della infezione contratta).

Il grafico sottostante evidenzia una relazione lineare (R²=0,98), raggruppando le Province in 5 classi sulla base del numero di casi infetti (in scala logaritmica: log contagiati), in relazione ai

superamenti del limite delle concentrazioni di PM_{10} per ognuna delle 5 classi di Province (media per classe: media n° superamenti lim $PM10/n^{\circ}$ centraline Prov.) (**Figura 1**)

Tale analisi sembra indicare una relazione diretta tra il numero di casi di COVID-19 e lo stato di inquinamento da PM_{10} dei territori, coerentemente con quanto ormai ben descritto dalla più recente letteratura scientifica per altre infezioni virali.

La relazione tra i casi di COVID-19 e PM_{10} suggerisce un'interessante riflessione sul fatto che la concentrazione dei maggiori focolai si è registrata proprio in Pianura Padana mentre minori casi di infezione si sono registrati in altre zone d'Italia (**Figura 2**).

Figura 2

Considerando il tempo di latenza con cui viene diagnosticata l'infezione da COVID-19 mediamente di 14 giorni, allora significa che la fase virulenta del virus, che stiamo monitorando dal 24 febbraio (dati della Protezione Civile COVID-19) al 15 Marzo, si può posizionare intorno al periodo tra il 6 febbraio e il 25 febbraio.

Le curve di espansione dell'infezione nelle regioni (**Figura 3**) presentano andamenti perfettamente compatibili con i modelli epidemici, tipici di una trasmissione personapersona, per le regioni del sud Italia mentre mostrano accelerazioni anomale proprio per quelle ubicate in Pianura Padana in cui i focolai risultano particolarmente virulenti e lasciano ragionevolmente ipotizzare ad una diffusione mediata da carrier ovvero da un veicolante.

Figura 3

Le fasi in cui si evidenziano questi effetti di impulso ovvero di **boos**t sono concomitanti con la presenza di elevate concentrazioni di particolato atmosferico che in regione Lombardia ha presentato una serie di andamenti oscillanti caratterizzati da tre importanti periodi di sforamenti delle concentrazioni di PM10 ben oltre i limiti (**Figura 4**: esempio Provincia di Brescia).

Figura 4

Tali analisi sembrano quindi dimostrare che, in relazione al periodo 10-29 Febbraio, concentrazioni elevate superiori al limite di PM₁₀ in alcune Province del Nord Italia possano aver esercitato un'azione di **boost**, cioè di impulso alla diffusione virulenta dell'epidemia in Pianura Padana che non si è osservata in altre zone d'Italia che presentavano casi di contagi nello stesso periodo. A questo proposito è emblematico il caso di Roma in cui la presenza di contagi era già manifesta negli stessi giorni delle regioni padane senza però innescare un fenomeno così virulento.

Oltre alle concentrazioni di particolato atmosferico, come fattore veicolante del virus, in alcune zone territoriali possono inoltre aver influito condizioni ambientali sfavorevoli al tasso di inattivazione virale. Il gruppo di lavoro sta approfondendo tali aspetti per contribuire ad una comprensione del fenomeno più approfondita.

CONCLUSIONI E SUGGERIMENTI

Si evidenzia come la specificità della velocità di incremento dei casi di contagio che ha interessato in particolare alcune zone del Nord Italia potrebbe essere legata alle condizioni di inquinamento da particolato atmosferico che ha esercitato un'azione di *carrier* e di *boost*. Come già riportato in casi precedenti di elevata diffusione di infezione virale in relazione ad elevati livelli di contaminazione da particolato atmosferico, si suggerisce di tenere conto di questo contributo sollecitando misure restrittive di contenimento dell'inquinamento.

BIBLIOGRAFIA

- (1) Ciencewicki J et al., 2007. "Air Pollution and Respiratory Viral Infection" Inhalation Toxicology, 19: 1135-1146
- (2) SedImaier N., et al., 2009 "Generation of avian influenza virus (AIV) contaminated fecal fine particulate matter (PM_{2.5}): Genome and infectivity detection and calculation of immission" Veterinary Microbiology 139, 156-164
- (3) Despres V.R., et al., 2012 "Primary biological aerosol particles in the atmosphere: a review" Tellus B, 64, 15598
- (4) Chen P-S., et al., 2010 "Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background Days" Environmental Health Perspectives, 118, 9
- (5) Ye Q., et al., 2016 "Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children" Environ Science and Pollution Research, 23, 20178-20185
- (6) Chen G., et al., 2017 "Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study." Environmental Research 156, 306-311
- (7) Peng L., et al., 2020 "The effects of air pollution and meteorological factors on measles cases in Lanzhou, China" Environmental Science and Pollution Research https://doi.org/10.1007/s11356-020-07903-4

RESEARCH

Longitudinal survey of microbiome associated with particulate matter in a megacity

Nan Qin^{1,2*+}, Peng Liang^{3,4+}, Chunyan Wu²⁺, Guanqun Wang⁴, Qian Xu^{1,2}, Xiao Xiong², Tingting Wang², Moreno Zolfo⁵, Nicola Segata⁵, Huanlong Qin¹, Rob Knight^{6,7,8}, Jack A. Gilbert^{6,8,9*} and Ting F. Zhu^{4*}

Abstract

Background: While the physical and chemical properties of airborne particulate matter (PM) have been extensively studied, their associated microbiome remains largely unexplored. Here, we performed a longitudinal metagenomic survey of 106 samples of airborne PM_{2.5} and PM₁₀ in Beijing over a period of 6 months in 2012 and 2013, including those from several historically severe smog events.

Results: We observed that the microbiome composition and functional potential were conserved between PM_{2.5} and PM₁₀, although considerable temporal variations existed. Among the airborne microorganisms, *Propionibacterium acnes, Escherichia coli, Acinetobacter Iwoffii, Lactobacillus amylovorus*, and *Lactobacillus reuteri* dominated, along with several viral species. We further identified an extensive repertoire of genes involved in antibiotic resistance and detoxification, including transporters, transpeptidases, and thioredoxins. Sample stratification based on Air Quality Index (AQI) demonstrated that many microbial species, including those associated with human, dog, and mouse feces, exhibit AQI-dependent incidence dynamics. The phylogenetic and functional diversity of air microbiome is comparable to those of soil and water environments, as its composition likely derives from a wide variety of sources.

Conclusions: Airborne particulate matter accommodates rich and dynamic microbial communities, including a range of microbial elements that are associated with potential health consequences.

Keywords: Particulate matter (PM), Microbiome, Bacteria, Eukaryotes, Viruses, Archaea, Air pollution

* Correspondence: qinnan001@126.com; gilbertjack@gmail.com; tzhu@tsinghua.edu.cn

BMC

⁴School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China Full list of author information is available at the end of the article

Qin *et al. Genome Biology* (2020) 21:55 https://doi.org/10.1186/s13059-020-01964-x

Open Access

[†]Nan Qin, Peng Liang and Chunyan Wu contributed equally to this work. ¹Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China

 $^{^{\}rm 6}{\rm Department}$ of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA

Background

As a result of rapid industrialization and urbanization, global megacities have been impacted by extensive and intense particulate matter (PM) pollution events [1], which have potential human health consequences [2-4]. Severe PM pollution is associated with chronic obstructive pulmonary disease (COPD) and asthma, as well as risks for early death [5-8]. While the chemical components of PM pollution and their impacts on human health have been widely studied [9], the potential impact of pollutant-associated microbes remains unclear. Airborne microbial exposure, including exposure to dust-associated organisms, has been established to both protect against and exacerbate certain diseases [10–12]. Understanding the temporal dynamics of the taxonomic and functional diversity of microorganisms in urban air, especially during smog events, will improve our understanding of the potential microbe-associated health consequences. Yet to date, the airborne PMassociated microbiome, especially in urban environments, remains largely understudied [13, 14].

Recent advances in airborne particle DNA extraction and metagenomic library preparation have enabled low biomass environments to be subject to shotgun sequencing analysis [14]. In a previous study, we characterized the microbiome associated with airborne PM in Beijing over a week and identified more than 1300 bacterial, fungal, and viral species [13]. However, this short period is not sufficient to adequately observe the temporal dynamics of this complex microbial system. Thus, we collected 106 airborne PM samples in Beijing between October 2012 and March 2013, during which several record-breaking smog events [15] (Fig. 1a) and high incidences of respiratory diseases [16] occurred, and performed shotgun metagenomic analysis to generate a comprehensive airborne taxonomic and gene catalog, which facilitated the longitudinal characterization of microbial taxonomic diversity and functional potential.

Results

Based on the annotation by MetaPhlAn2 [17], the overwhelming majority of metagenomic reads from all samples were mapped to bacteria (95.5% of $PM_{2.5}$ and 93.0% of PM_{10}), followed by eukaryotes (1.5% of $PM_{2.5}$ and 2.2% of PM_{10}), archaea (0.2% of $PM_{2.5}$ and 0.2% of PM_{10}), and

Fig. 1 Taxonomic and functional characteristics of air microbiota. **a** Temporal distribution of daily PM concentration variations during the sampling period. **b** Relative abundance of different domains in air microbiome. **c** Taxonomic Shannon index of the PM_{2.5} (red) and PM₁₀ (blue) samples. **d** Gene number of the PM_{2.5} (red) and PM₁₀ (blue) samples. **e** Temporal distribution of relative abundance from the top 10 most abundant phyla across the sampling period of the PM_{2.5} (left) and PM₁₀ (right) samples. Asterisks denote Wilcoxon signed-rank test results; *P* values were adjusted using Benjamini and Hochberg false discovery rate (FDR) (**adjusted P < 0.01)

viruses (2.8% of PM_{2.5} and 4.5% of PM₁₀) (Fig. 1b). There was no statistical difference in either the alpha or the beta diversity of species or genes between the PM_{2.5} and PM₁₀ samples, with the exception of eukaryotic alpha diversity, which was significantly greater in PM₁₀ (Shannon diversity index, Wilcoxon signed-rank test, P < 0.01, Fig. 1c, d). The ten bacterial phyla with the greatest proportional representation showed substantial variation throughout the 6-month period, including a significant peak of Firmicutes in PM₁₀ samples during the two major smog events in January 2013 (P < 0.05; Fig. 1e). In addition, a prominent peak in the proportion of reads annotated to viruses was also found in both PM_{2.5} and PM₁₀ samples in late January and February (Fig. 1e, P < 0.01).

The metagenomic reads mapped to 702 bacterial species, 27 eukaryotic species, 56 viruses, and 14 archaeal species. The top 50 species of greatest proportion accounted for $71.7\% \pm 11.8\%$ of the total reads (bacteria 94.6%, eukarvotes 1.4%, viruses 4%) (Additional file 1: Table S3) and exhibited considerable variance in their relative abundance over time, although for the majority of these species, their relative abundance did not significantly differ between $PM_{2.5}$ and PM_{10} (Additional file 2: Figure S1a). Four of the top 50 species, namely Lactobacillus amylovorus, Lactobacillus reuteri, Ustilago maydis, and Porcine type C oncovirus, were at significantly greater proportions in PM10 compared with PM2.5 (Wilcoxon signed-rank test, adjusted P < 0.1). Notably, among the 30 species exhibiting significant differences between the 2 types of samples, 29 were enriched in PM₁₀ samples, whereas only 1 was enriched in PM_{2.5} samples (Additional file 1: Table S4, Wilcoxon signedrank test, adjusted P < 0.1). We also correlated distancecorrected dissimilarities of taxonomic community composition with major meteorological factors, of which temperature and dew point had the strongest correlation with taxonomic composition in PM (Additional file 1: Table S5, Additional file 2: Figure S1b). We also monitored the presence of DNA associated with human pathogens in the samples and showed that in both PM_{2.5} and PM_{10} , the reads of these hazard microbes displayed only weak correlation with PM concentrations (Additional file 2: Figure S1c); examination of individual pathogen species showed that some peaked in January, coincided with the worst smog event during the study period (Additional file 2: Figure S2). Application of StrainPhlAn analysis revealed considerable strain-level variations in some of the most abundant species, i.e., Acinetobacter lwoffi, Acinetobacter johnsonii, Escherichia coli, Kocuria sp. UCR OTCP, Pantoea ananatis, Pantoea dispersa, Propionibacterium acnes, and Rhodococcus sp. R04 (Additional file 2: Figure S3-6). Taken together, we observed both similarities and differences in $\ensuremath{\text{PM}_{2.5}}$ and PM_{10} microbiota. PM_{10} or larger particles were formed by aggregation of smaller particles, which could explain the similarities of microbe structure between 2 types of PM samples. The different microbe structures of $PM_{2.5}$ and PM_{10} particles could be a result of the different particulate diameters, since $PM_{2.5}$ has similar sizes as bacteria and PM_{10} has similar sizes as fungi.

We attempted to determine the overlap of core functional genes between the PM pollutants, gut microbiota [18], and ocean microbiota [19] to identify the core functional categories, and compare their relative importance in each database. To this end, we generated a non-redundant gene catalog containing 4,301,891 microbial genes from all PM samples, including 3,278,420 prokaryotic and 1, 023,471 eukaryotic genes. The PM core contained considerably reduced functional gene and orthologous group (OG) diversity compared with the human gut and oceanassociated microbiomes, potentially reflecting both the lower biomass and restrictive selective pressures in particulate matter (Kruskal-Wallis rank-sum test, adjusted P < 0.05, Additional file 2: Figure S7a-c).

Next, genes that potentially confer resistance to 35 different antibiotics were identified. The proportion of genes encoding antibiotic resistance remained stable throughout the study period, and both the number and reads per kilobase per million reads (RPKM) value of antibiotic resistance genes (ARGs) showed no significant differences between $PM_{2.5}$ and PM_{10} samples (Fig. 2a, b), which is suggestive of universal selective pressure within this environment. Genes encoding penam resistance had the greatest overall proportion across PM_{2.5} and PM₁₀ (Fig. 2c), while TEM betalactamases were the overall most abundant class (Fig. 2d). In addition, we also found several detoxification genes in PM samples including transporters (ACR transporter, MatE, MFS), transpeptidases, and thioredoxins, with the MFS 1 gene representing the greatest proportion (Fig. 2e, f). PM samples harbored the greatest number of different ARGs and detoxification genes when compared with marine or human gut samples (adjusted P < 0.01), but the corresponding RPKM was on par with that of the human gut (Fig. 2g-j). A published computational pipeline [20] was used to estimate the risk of ARGs in PM samples [20]. The resistance risk score was calculated based on the percentage of ARGs associated with mobile genetic elements (MGEs) (Additional file 1: Table S6). In total, there were 982 (5.0%) contigs with ARGs that contained at least 1 MGE (Additional file 1: Table S7) and 379 (1.9%) that contained multidrug resistance clusters (MDRCs) (Additional file 1: Table S8). Notably, a prominent peak of ARG risk was found in January (Additional file 2: Figure S8) when the smog pollution was the most severe.

We next applied network analysis to examine the microbial structure and co-occurrence patterns in samples with different PM metrics [21–24]. We used parameters including betweenness centrality, closeness centrality, and degree

Fig. 2 Challectristics of order resistance and occosmic forms in FM samples. **a** box pilot showing the functions of antibiotic resistance genes in $PM_{2.5}$ (red) and PM_{10} (blue) samples. **b** Box plot showing the RPKM values of total antibiotic resistance genes in $PM_{2.5}$ (red) and PM_{10} (blue) samples. **c**, **d** Box plots showing the top 10 most abundant antibiotic resistance targets (**c**) and types (**d**) across $PM_{2.5}$ (red) and PM_{10} (blue) samples. Labels 1–10 represent TEM beta-lactamase, major facilitator superfamily (MFS) antibiotic efflux pump, resistance-nodulation-cell division (RND) antibiotic efflux pump, Erm 23S ribosomal RNA methyltransferase, tetracycline-resistant ribosomal protection protein, lincosamide nucleotidyltransferase (LNU), sulfonamide resistant sul, ABC-F ATP-binding cassette ribosomal protection protein, chloramphenicol acetyltransferase (CAT), and ANT (6), respectively. **e** Bar plot showing the numbers of detoxification genes in $PM_{2.5}$ (red) and PM_{10} (blue) samples. **f** Box plot showing the relative abundance of detoxification genes across $PM_{2.5}$ (red) and PM_{10} (blue) samples. **f** Box plot showing the relative abundance of detoxification genes across $PM_{2.5}$ (red) and PM_{10} (blue) samples. **g**, **h** Box plot showing the number of antibiotic resistance gene types (**g**) and RPKM values of the total antibiotic resistance gene types (**j**) across different environments. **i**, **j** Box plot showing the number of detoxification gene types (**j**) across different environments. Asterisks denote Wilcoxon signed-rank test results; *P* values were adjusted using Benjamini and Hochberg false discovery rate (FDR) (*adjusted P < 0.05; **adjusted P < 0.01)

[21] to characterize the microbial structure of the two types of samples. Our analysis showed that the network complexity was associated with a higher betweenness, a lower closeness, and a higher degree and was significantly greater in PM_{10} (Additional file 2: Figure S7d, e, adjusted P < 0.05). As such, PM_{10} had a denser network, suggesting that a greater number of taxa had similar distributions over the 6-month period, and hence a greater degree of co-association, when compared with the taxa associated with $PM_{2.5}$ samples.

We divided the PM_{2.5} and PM₁₀ samples into five different classes according to the Air Quality Index (AQI) classification, between which both taxonomic and gene diversity differed (Fig. 3). The PM₁₀ samples showed less taxonomic diversity in AQI group I than in AQI groups III and IV (Fig. 3d–k, adjusted P < 0.05). The number of detoxification genes was greater in AQI group II than in AQI group I (Additional file 2: Figure S9, adjusted P < 0.05). We also analyzed the incidence (per sample

PCoA analysis based on the Bray-Curtis distance metric of species abundance in $PM_{2.5}$ (**b**) and PM_{10} (**c**) samples. **d–g** Taxonomic species number (**d**, **e**) and taxonomic Shannon index (**f**, **g**) for $PM_{2.5}$ (**d**, **f** = red) and PM_{10} (**e**, **g** = blue) samples, respectively. **h–k** Gene number (**h**, **i**) and gene Shannon index (**j**, **k**) for $PM_{2.5}$ (red) and PM_{10} (blue) samples, respectively. Asterisks denote Wilcoxon rank-sum test results (**P < 0.05; ***P < 0.01). **I** Pairwise Spearman's correlation matrix of the portion of airborne microorganisms associated with different environmental sources correlating with PM concentrations (*adjusted P < 0.05; **adjusted P < 0.01)

detection rate) dynamics of individual species in the five AQI groups. Our analysis revealed that the microbes could be divided into four clusters based on their incidence patterns (Additional file 1: Table S9, Additional file 2: Figure S10a). Cluster 1 comprised more than half of the identified species and was typically identified in less than 10% of the PM samples. Clusters 2 and 3 were depauperate in AQI group I and showed a noticeable increase in incidence in AQI groups II-V. The incidence was mostly below 0.5 except in group V, whereas in cluster 3, the incidence was mostly above 0.5 in all groups. Lastly, species in cluster 4, which was the smallest among the four clusters, maintained a high incidence close to 1 in all five AQI groups of PM particles. The taxonomic compositions of the four clusters differed considerably at both phylum and species levels (Additional file 2: Figure S10b, c, S11).

Subsequently, we calculated the correlation coefficients between individual microbial species and pollutant

concentration using MaAsLin [25]. In total, 152 species in PM₁₀ samples exhibited a correlation with pollutant concentration, considerably more than that in PM_{2.5} samples (49 species; adjusted P < 0.1, Additional file 1: Tables 10 and 11). More importantly, although most of the species identified in PM₁₀ samples displayed significant differences in relative abundance between a low AQI level (I or II) and a high AQI level (IV or V), none in $PM_{2.5}$ exhibited such patterns (Wilcoxon rank-sum test, adjusted P < 0.1, Additional file 1: Tables 12). The microbes included those associated with human infections, such as Pseudomonas aeruginosa [26, 27], with a positive correlation with pollutant concentration for both PM2.5 and PM10 samples (adjusted P < 0.05), and Stenotrophomonas maltophilia [28], with a positive correlation with the pollutant concentration in PM₁₀ samples. In addition, 72 microbes manifested prominent peaks in January (Additional file 2: Figure S12) when the air pollution was most severe. These included

many human commensals and potential human pathogenic agents such as *P. aeruginosa*, *S. maltophilia*, and *Talaromyces marneffei* [29], as well as potential chickenassociated pathogens such as Gallid herpesvirus [30] and avian endogenous retrovirus (AEV) [31].

Finally, using existing metagenomic databases of human, dog, pig, and mouse feces [18, 32–34], we examined the association between potential source of the different microorganisms and the five AQI groups. As pollutant concentrations increased, the proportion of human, dog, and pig feces-associated microbial species significantly increased in both PM_{2.5} samples (r = 0.36, 0.37, 0.33, respectively, adjusted P < 0.05) and PM₁₀ samples (r = 0.50, 0.54, 0.43, respectively, adjusted P < 0.01), but the trends were more pronounced in PM₁₀ samples (Fig. 31). The inventory of the human feces-associated microbes in PM₁₀ samples was also significantly different compared with that in PM_{2.5} samples (P = 0.029, ANOSIM test based Bray-Curtis distance metric of species abundance).

Discussion

Our work revealed a great diversity of microbial species and ARGs in Beijing's particulate matter, largely consistent with a recent study [35]. The data suggest that potential pathogen and antibiotic resistance burden increases with increasing pollution levels and that severe smog events promote the exposure. In addition, the particulate matter also contained several bacteria that harbored ARGs flanked by mobile genetic elements (Additional file 1: Table S7), which could be associated with horizontal gene transfer. Many of these bacteria were typical or putative members of the human microbiome. Analysis based on AQI groups showed that microbial species exhibited a wide range of incidence and many, including some mammalian gut species, displayed apparent changes in the five AQI groups of samples, and such AQI-related dynamics was affected by the size of particulate matter.

These findings will improve our understanding of microbial dynamics associated with different particulate matter size classes, especially as it pertains to different pollution events. It is possible that the diversity of microorganisms associated with particulate matter results from the reduction in certain environmental stresses such as UV light and desiccation. However, particulate matter also facilitates transient microbial interactions and likely supports substantial levels of extracellular DNA and dead microbes, which may complicate the interpretation of these dynamics.

The potential for particulate matter-associated microbes and viruses to influence human health requires further investigations. Microbial pathogenic transmission through the air, and consequently the risk for infection, can be quantified using metagenomics, as it has been for nosocomial source tracking in hospitals [36, 37], but only if specific infections can be identified in the human population at risk. Any spurious statements about the "presence" of DNA signatures associated with potential pathogens in an environment should be treated as only exploratory evidence of potential risks. Unless these trends can be directly associated with actual infection events in humans or animals, they will remain invalid assessment of health risk. However, routine monitoring and quantification of microbial signatures in atmospheric systems associated with urban environments offer the potential for future retrospective examination of risk events that could promote mitigation strategies. For example, if an outbreak of a multidrug-resistant pathogen infection occurs in a city, being able to determine the environmental and pollution events that are associated with increased risks of exposure could be used as evidence to influence urban policy to reduce exposure. Therefore, the validity of these techniques for continual airborne microbial risk assessment should be further explored, especially for areas of well-understood risks, such as in regions with intensive poultry or pig farming, which could represent zoonotic reservoirs for infection risks.

Conclusions

Our work provides further evidence for potential environmental and mammalian sources of microbes associated with urban airborne particulate matter and demonstrates differences between pollution levels that could be associated with potential health risks.

Methods

Particulate matter and meteorological data collection

The methods used for particulate matter collection were previously described [13, 14]. PM samples were collected from samplers located on the rooftop of a building at Tsinghua University. Three high-volume air samplers (Thermo Electron Corp., MA, USA) were used in this study, with each drawing ambient air at a flow rate of 1.13 m³/min for 23 h per day. Two of the samplers were equipped with PM25 fractionating inlets and one equipped with PM₁₀ fractionating inlet. Particulate matters were trapped onto $20.32 \times 25.4 \text{ cm}^2$ Tissuquartz filters (PALL, NY, USA) with 99.9% typical aerosol retention. All of the filters were sterilized by baking in a muffle furnace at 500 °C for 5 h prior to sampling. Before and after deployment in the filter cartridge, each sterilized filter was packaged in a sterilized aluminum foil and stored in a sealed bag. The filter holder and all the tools used for changing new filters were thoroughly cleaned with 75% ethanol or autoclaved every day to avoid contamination. The net weight of each filter was recorded at milligram accuracy before and after sampling, and the weight differences were used to calculate the PM concentration. The filters were stored in aluminum foils and plastic bags at – 80 °C until DNA extraction. The meteorological data were retrieved from the website (https://www.wunderground.com/), using the weather parameters from Beijing Capital Airport (40.07° N, 116.59° E, index number 54511). The weather parameters were exported in a CSV form to be used in further analysis (Additional file 1: Table S1). Tissuquartz filters without exposure to open air were used as negative controls.

DNA extraction, library construction, and sequencing

We have previously developed an optimized protocol to improve the DNA yield and quality from air particle samples [13, 14]. In this study, we used this technique to extract DNA from PM_{2.5} and PM₁₀ samples: 1/4 of PM₁₀ filter (a total of ca. 103.04 $\mbox{cm}^2\mbox{)}$ and 1.5 of the $\mbox{PM}_{2.5}$ filters (a total of ca. 618.24 cm^2) were used to extract microbial DNA. The filters were cut into $8.96 \times 11.5 \text{ cm}^2$ pieces and placed in 50-mL centrifuge tubes. Next, the filter was soaked into ca. 50 mL 1× PBS buffer. The tubes were pelleted at $4 \degree C$ by centrifuging at 200g for 3 h. After vortexing, the resuspension was filtered by a 0.2-µm Supor 200 PES Membrane Disc Filter (PALL, NY, USA). The PALL filter was then used as the starting material for pretreatment by MO-BIO PowerSoil DNA isolation kit (Carlsbad, CA, USA). The samples were then incubated at 65 °C in PowerBead Tubes for 15 min followed by vortexing for 10 min. The following steps were performed according to the standard MO-BIO PowerSoil DNA isolation protocol except for the column purification step, which was replaced with magnetic bead purification (Agencourt AMPure XP, Beckman, CA, USA) for improved DNA yield. Extracted DNA samples were diluted in 50 µL sterilized water. We used the Qubit 2.0 fluorometer (Thermo Fisher Scientific Inc. MA, USA) to quantify the concentration of DNA. Library preparation was performed according to the manufacturer's instructions (Illumina, CA, USA). We constructed a paired-end library with an insert size of 500 bp. A starting amount of 5 ng DNA from each DNA sample was used for library preparation in order to ensure sample consistency. In order to minimize possible bias introduced by PCR, 12 cycles were performed during PCR amplification.

Metagenomic sequencing

The quality of all DNA libraries was evaluated using an Agilent bioanalyzer (Agilent Technologies, CA, USA) with the DNA LabChip 1000 kit. Whole-genome shotgun sequencing of PM samples collected was carried out on the Illumina Hiseq 4000 platform (Illumina, CA, USA) with 150-bp paired-end read length. In total, we obtained 946-Gb raw data (mean 8.8 Gb per sample, mean insert size 354 ± 83 bp). The raw reads of metagenomic sequencing

were processed to remove low-quality reads and adaptor contaminations. Bases with a quality score < 30 were trimmed from 3' end of reads, and reads < 70 bp were removed. Finally, we obtained 882-Gb clean data (mean 8.2 Gb per sample), and the proportion of high-quality reads was about 92.12% on average in all samples.

De novo assembly and gene catalog construction

De novo assembly of clean reads was performed using MetaVelvet-SL (version 1.2.02) [38] with 63-kmer. Furthermore, the gaps in the scaffold were filled using GapCloser [39]. A total of 3.58 million contigs were generated (minimum length of 300 bp). These contigs had a total length of 4.97 Gb and an average N50 length of 12,243 bp and ranged from 669 to 62,034 bp (Additional file 1: Table S2). To create a multi-kingdom gene catalog of inhalable airborne microorganisms in Beijing's PM_{2.5} and PM₁₀ pollutants, two gene prediction methods were performed, namely, Meta-GeneMark [40] (version 3.26) for prokaryotic microorganisms (bacteria, archaea, and virus) and Augustus [41] for eukaryotic microorganisms (fungi). For contigs that both prokaryotic and eukaryotic genes were called, we used the Taxator-tK [42] to assign them to a kingdom and the corresponding predicted genes were reserved. Contigs that were not identified by Taxator-tK were removed, accounting for 10% in length of all contigs which harbor genes. Contigs assigned to animals or plants by Taxator-tK were removed. A non-redundant gene catalog was constructed using CD-HIT [43] (version 4.5.7) with a sequence identity cutoff of 95% and a minimum coverage cutoff of 90% for shorter sequences. The final non-redundant gene catalog contains 4, 301,891 microbial genes, including 3,278,420 prokaryotic genes and 1,023,471 eukaryotic genes. We compared the core genes of PM pollutants to gut microbiota and ocean microbiota using the criteria of 95% sequence identity and 90% alignment coverage of the shorter sequence.

Taxonomic and functional profiling

Metagenomic reads were taxonomically profiled using MetaPhlAn2 with default parameter settings. The metagenomic gene catalog was annotated by alignment against the proteins in the eggNOG 3.0 database [44] and KEGG database [45] using BLASTP (*E* value $\leq 1E$ -5). A gene was assigned to an OG or KO by the highest scoring annotated hit with at least one HSP (high-scoring segment pair) scoring > 60. For query genes with multiple matches, the annotated reference gene with the highest score was used. For each functional feature (OG in eggNOG or KO in the KEGG database), we estimated its abundance by accumulating the relative abundance of all genes from belonging to the same family. HUMAnN2 [46] was subsequently used to calculate the relative abundance of metabolic pathways in the MetaCyc database [47]. Potential pathogens were identified by first

searching the MetaPhlAn-annotated species in Microbial Genome Database System (http://data.mypathogen.org/ search/genomeSearch) for human pathogens. The resulting microbes were further validated by PubMed search to ensure that each had been reported in human infection or human diseases.

Strain-level analysis

Strain-level profiling was performed with StrainPhlAn. For each sample, the clean reads were first mapped against the MetaPhlAn2 markers by Bowtie2 [48] and then the consensus sequences were produced according to the mapping result. The consensus sequences represent the most abundant strains for each species in a sample. Similarly, the consensus sequences of public reference genomes of stains for each species were obtained by aligning the markers to these genomes. Finally, the extracted consensus sequences of references and samples were multiply aligned by MUSCLE [49], and the phylogenetic trees were built by RAXML [50] (parameters: -m GTRCAT and -p 1234).

Antibiotic resistance and detoxification genes

Predicted genes were annotated with BLASTX (E value < 1E-10, identity > 60%, and minimum alignment length > 25 amino acids) against the CARD database [51]. Multidrug resistance clusters were identified as contigs containing multiple antibiotic resistance proteins. Employing the method described in the previous paper [52], the Gene Ontology annotation [46] and Pfam (release 24) [53] were used to create the detoxification protein database, which contains 31 strictly detoxification-related protein families with profile HMMs. All gene sequences were scanned against the database of profile HMMs using hmmsearch, a part of the HMMER3 software [54]. ShortBRED [55] was used to quantify the abundance of antibiotic resistance genes and detoxification genes. ShortBRED markers were identified from the annotated antibiotic resistance proteins or detoxification proteins using the reference database of Swiss-Prot in Uniprot. Clean reads were mapped against these marker sequences with 99% sequence identity. All analyses were performed on gene abundance normalized to reads per kilobase per million reads (RPKM).

Mobile genetic elements

Putative MGEs were identified from the contigs with BLASTN (*E* value < 1E-10, identity > 60%, coverage of the MGE reference > 90%) against the ACLAME database, comprising known plasmids, bacteriophages, and transposons [56].

Co-occurrence network

To construct the meta-community co-occurrence network, we first removed species with relative abundances less than 0.01% or present in less than 10 samples. The Spearman correlation coefficients between species were computed using cor.test function in R 3.6.2 (Lucent Technologies, NJ, USA), and all the *P* values were adjusted for multiple testing using the Benjamini and Hochberg false discovery rate (FDR) controlling procedure. Based on correlation coefficients (> 0.78) and FDR (< 0.05) adjusted *P* values for correlation, we constructed the co-occurrence network. The cutoff of correlation coefficients was determined as 0.78 through random matrix theory-based methods [57]. Network properties were calculated with the igraph package. The co-occurrence networks were visualized by Gephi.

Statistical analysis

Adjustment for multiple testing was performed using Benjamini and Hochberg false discovery rate (FDR) controlling procedure (p.adjust function in R). To explain the Bray-Cutis distance of taxonomic community composition with major meteorological factors, the permutational multivariate analysis of variance was employed using the function adonis from the R package vegan. The P value was determined by 999 permutations and was subsequently adjusted by the Benjamini and Hochberg method.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10. 1186/s13059-020-01964-x.

Additional file 1: Table S1. Summary of PM and meteorological data. Table S2. Summary of sequencing and assembly data. Table S3. Top 50 abundant species in PM samples. Table S4. Significant putative genus/ species between PM_{2.5} and PM₁₀ samples identified by Wilcoxon signedrank test (FDR <0.1). Table S5. PERMANOVA for the influence of Meteorological factors on the taxonomic profile. Table S6. Antibiotic resistome risk analysis of PM samples. Table S7. Antibiotic resistance contigs contained at least one MGEs. Table S8. Antibiotic resistance contigs contained multidrug resistance clusters. Table S9. Species clusters based on their incidence patterns in the five PM concentration levels of PM₁₀. Table S10. Associations of PM₁₀ concentration with individual species (FDR <0.05). Table S11. Associations of PM_{2.5} concentration with individual species (FDR <0.05). Table S12. Significant putative species identified by Wilcoxon rank-sum test between different PM₁₀ concentration levels (FDR <0.1).

Additional file 2: Figure S1. Most abundant microorganism species identified from airborne particulate matters (a) and the meteorological factors associated with PM microbiome (b). a, Box plot of the daily variations of the relative abundance of the top 50 most abundant microorganism species in PM samples. Boxes correspond to the interquartile range between the 25th and 75th percentiles, and the central lines represent the 50th percentile. Ends of the central lines correspond to the lowest and highest values no more than 1.5 times the interquartile range from the box, while circles represent the outliers. Red, PM_{2.5}; Blue, PM₁₀. b, The bar plot shows the explained variation of each factor in the variation of microbial composition [Bray-Curtis (BC) distance]. c. Spearman rank-order correlation plot showing the relationship between pathogen mapped reads (%) and PM concentration. Figure S2. Temporal distribution of the daily relative abundance of 96 human pathogens and PM concentration variations during the sampling time. Figure S3. Strain-level phylogenetic trees of Escherichia coli. Black, reference strains; red, MetaSUB samples; green, PM samples. Figure S4.

Strain-level phylogenetic trees of Propionibacterium acnes (a), Acinetobacter lwoffi (b) and Pantoea ananatis (c). Black, reference strains; red, Meta-SUB samples; green, PM samples. Figure S5. Strain-level phylogenetic trees of Kocuria sp. UCD OTCP (a), Acinetobacter johnsonii (b) and Pantoea dispersa (c). Black, reference strains; red, MetaSUB samples; green, PM samples. Figure S6. Strain-level phylogenetic trees of Rhodococcus sp. R04. Black, reference strains; red, MetaSUB samples; green, PM samples. Figure S7. Comparison of genesets from PM, ocean and gut microbiota (a, b, c) and the network topological variables of PM microbiota (d, e). a, Venn diagram indicating a low overlap of PM, human gut and ocean gene catalog. b, Venn diagram of core OGs suggesting a large overlap of functions among PM, human gut and ocean microbiota. c, Bar chart showing the comparison of gene abundance summarized into OG functional categories. A, RNA processing and modification; B, Chromatin structure and dynamics; C, Energy production and conversion; D, Cell cycle control, cell division, chromosome partitioning; E, Amino acid transport and metabolism: F. Nucleotide transport and metabolism: G. Carbohydrate transport and metabolism; H, Coenzyme transport and metabolism; I, Lipid transport and metabolism; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, Replication, recombination and repair; M, Cell wall/membrane/envelope biogenesis; N, Cell motility; O, Posttranslational modification, protein turnover, chaperones; P, Inorganic ion transport and metabolism; Q, Secondary metabolites biosynthesis, transport and catabolism; R, General function prediction only; S, Function unknown; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and vesicular transport; V, Defense mechanisms; W, Extracellular structures; Z, Cytoskeleton. d, The distribution of degree of nodes in the networks. e, Network topological variables comparison between PM_{2.5} (red) and PM₁₀ (blue) samples (up), PM_{2.5} <75 μ g/m³ and PM_{2.5} >75 μ g/m³ (middle), as well as $PM_{10} < 150 \ \mu g/m^3$ and $PM_{10} > 150 \ \mu g/m^3$ (bottom). Asterisks denote Kruskal-Wallis test results, p-values were adjusted using Benjamini and Hochberg false discovery rate (FDR) (*, adjusted P <0.05, **, adjusted P <0.01, ***, adjusted P <0.001). Figure S8. Temporal distribution of daily resistance risk and PM concentration variations during the sampling time. (a-e) The percentage of contigs with ARG (a), MGE (b), pathogen (c), ARG&MGE (d) and ARG&MGE&pathogen (e) in all contigs. (f) The resistance risk score. Figure S9. Comparative analysis of antibiotic resistance and detoxification gene for 5 different classes of PM_{2.5} and PM₁₀ samples. a, b, c, d, show the numbers of antibiotic resistance gene types (a, b) and RPKM values of the total antibiotic resistance gene types (c, d) in PM_{2.5} (red) and PM₁₀ (blue) samples, respectively. e, f, g, h, show the numbers of detoxification gene types (e, f) and RPKM values of the total detoxification gene types (g, h) in PM_{2.5} (red) and PM₁₀ (blue) samples, respectively. Asterisks denote Kruskal-Wallis test results, p-values were adjusted using Benjamini and Hochberg false discovery rate (FDR) (*, adjusted P < 0.05). Figure S10. Species clusters based on their incidence patterns in the five PM concentration levels of PM₁₀ samples. a, Hierarchical Ward-linkage clustering of species based on their incidence patterns in the five PM concentration levels of PM₁₀ samples. Colouring represents the incidence (per sample detection rate). b, Proportion of species affiliating to each of the 5 phyla in the four species clusters of $\ensuremath{\mathsf{PM}_{10}}$ samples. c, The heat map of relative abundance of species in cluster 4. Colouring represents the relative abundance of species. Figure S11. Heat map of relative abundance of species in cluster 2 (a) and cluster 3 (b). Figure S12. Temporal distribution of the daily relative abundance of 72 microbes and PM concentration variations during the sampling time.

Additional file 3. Review history.

Acknowledgements

We thank C. Cao, J. Jiang, and B. Wang for the helpful discussions and collection of the PM samples.

Peer review information

Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Review history

The review history is available as Additional file 3.

Authors' contributions

NQ, JAG, and TFZ designed the study. PL extracted the DNA and constructed the sequencing library. TW performed the sequencing. CW, PL, GW, QX, XX, TW, MZ, NS, HQ, and RK analyzed the data. All authors discussed the results and wrote the manuscript. The author(s) read and approved the final manuscript.

Funding

This work was supported in part by funding from the Ministry of Science and Technology of China (No. 2016YFC0206300 and No. 2015CB553402); the National Natural Science Foundation of China (No. 21925702, No. 31470532, No. 91543102, No. 31970111, No. 31670118, and No. 81730102); the Beijing Nova Program (No. Z171100001117011); the Tsinghua University-Peking University Center for Life Sciences (CLS), Tsinghua University Initiative Scientific Research Program (No. 20161080133); the Beijing Advanced Innovation Center for Structural Biology; the Beijing Frontier Research Center for Biological Structure; and the Tongji University Subject Pilot Program (No. 162385).

Availability of data and materials

Sequencing data are available at NCBI under the bioproject number PRJNA486429 [58].

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Institute of Intestinal Diseases, Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China. ²Realbio Genomics Institute, Shanghai 200050, China. ³School of Life Sciences, Peking University, Beijing 100871, China. ⁴School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China. ⁵Centre for Integrative Biology, University of Trento, 38123 Trento, Italy. ⁶Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA. ⁷Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA. ⁸Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA.

Received: 9 July 2019 Accepted: 18 February 2020 Published online: 03 March 2020

References

- Zhang RY, Wang GH, Guo S, Zarnora ML, Ying Q, Lin Y, Wang WG, Hu M, Wang Y. Formation of urban fine particulate matter. Chem Rev. 2015;115: 3803–55.
- 2. Zhang Q, He K, Huo H. Policy: cleaning China's air. Nature. 2012;484:161–2.
- Lee JY, Park EH, Lee S, Ko G, Honda Y, Hashizume M, Deng F, Yi S-M, Kim H. Airborne bacterial communities in three east asian cities of China, South Korea, and Japan. Sci Rep. 2017;7:5545.
- 4. Cleaner urban air tomorrow? [Editorial]. Nature Geosci. 2017;10:69.
- 5. Kim K-H, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–43.
- Walton H, Dajnak D, Beevers S, Williams M, Watkiss P, Hunt A. Understanding the health impacts of air pollution in London. London: Kings College London, Transport for London and the Greater London Authority; 2015.

- Conibear L, Butt EW, Knote C, Arnold SR, Spracklen DV. Residential energy use emissions dominate health impacts from exposure to ambient particulate matter in India. Nat Commun. 2018;9:617.
- Huang R-J, Zhang Y, Bozzetti C, Ho K-F, Cao J-J, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F. High secondary aerosol contribution to particulate pollution during haze events in China. Nature. 2014;514:218–22.
- Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, Ledford JG, Marques dos Santos M, Anderson RL, Metwali N. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375:411–21.
- Valkonen M, Täubel M, Pekkanen J, Tischer C, Rintala H, Zock JP, Casas L, Probst-Hensch N, Forsberg B, Holm M. Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort. Indoor Air. 2018; 28:16–27.
- Bharadwaj P, Zivin JG, Mullins JT, Neidell M. Early-life exposure to the great smog of 1952 and the development of asthma. Am J Respir Crit Care Med. 2016;194:1475–82.
- Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G, Jiang J, Zhu TF. Inhalable microorganisms in Beijing's PM_{2.5} and PM₁₀ pollutants during a severe smog event. Environ Sci Technol. 2014;48:1499–507.
- Jiang W, Liang P, Wang B, Fang J, Lang J, Tian G, Jiang J, Zhu TF. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. Nat Protoc. 2015;10:768–79.
- Ouyang Y. China wakes up to the crisis of air pollution. Lancet Respir Med. 2013;1:12.
- Xu Q, Li X, Wang S, Wang C, Huang F, Gao Q, Wu L, Tao L, Guo J, Wang W. Fine particulate air pollution and hospital emergency room visits for respiratory disease in urban areas in Beijing, China, in 2013. PLoS One. 2016; 11:e0153099.
- Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling (vol 12, pg 902, 2015). Nat Methods. 2016;13:101.
- Wen C, Zheng Z, Shao T, Liu L, Xie Z, Le Chatelier E, He Z, Zhong W, Fan Y, Zhang L, et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017;18:142.
- Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.
- Oh M, Pruden A, Chen C, Heath LS, Xia K, Zhang L. MetaCompare: a computational pipeline for prioritizing environmental resistome risk. FEMS Microbiol Ecol. 2018;94:1–9.
- Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891.
- Ruan Q, Dutta D, Schwalbach MS, Steele JA, Fuhrman JA, Sun F. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics. 2006;22:2532–8.
- Fuhrman JA, Steele JA. Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat Microb Ecol. 2008;53:69–81.
- Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
- Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79.
- Nelson JW, Tredgett MW, Sheehan J, Thornton D, Notman D, Govan J. Mucinophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis. Infect Immun. 1990;58:1489–95.
- Bacci G, Mengoni A, Fiscarelli E, Segata N, Taccetti G, Dolce D, Paganin P, Morelli P, Tuccio V, De Alessandri A. A different microbiome gene repertoire in the airways of cystic fibrosis patients with severe lung disease. Int J Mol Sci. 2017;18:1654.
- Talmaciu I, Varlotta L, Mortensen J, Schidlow DV. Risk factors for emergence of Stenotrophomonas maltophilia in cystic fibrosis. Pediatr Pulmonol. 2000;30:10–5.
- Le T, Ly VT, Thu NTM, Nguyen A, Thanh NT, Vinh Chau NV, Thwaites G, Perfect J, Kolamunnage-Dona R, Hope W: Population pharmacodynamics of amphotericin B deoxycholate for disseminated infection caused by *Talaromyces maneffei*. Antimicrobial Agents and Chemotherapy 2018:AAC.01739–01718.
- Laursen AMS, Kulkarni RR, Tahaabdelaziz K, Plattner BL, Read LR, Sharif S. Characterizaton of gamma delta T cells in Marek's disease virus (Gallid herpesvirus 2) infection of chickens. Virology. 2018;522:56–64.

- Hu X, Zhu W, Chen S, Liu Y, Sun Z, Geng T, Song C, Gao B, Wang X, Qin A. Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses. Arch Virol. 2017;162:89–101.
- Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, Hayward MR, Forslund SK, Schmidt TSB, Descombes P. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6:72.
- Xiao L, Estelle J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, Liang S, Pedersen AØ, Kjeldsen NJ, Liu C. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1:16161.
- Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J, Zhang D. A catalog of the mouse gut metagenome. Nat Biotechnol. 2015;33:1103.
- Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DJ. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4:54.
- Pham TM, Kretzschmar M, Bertrand X, Bootsma M, on behalf of C-MC. Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models. PLoS Comput Biol. 2019;15:e1006697.
- Reigadas E, Vazquez-Cuesta S, Onori R, Villar-Gomara L, Alcala L, Marin M, Martin A, Munoz P, Bouza E. Clostridioides difficile contamination in the environment of a clinical microbiology laboratory and laboratory workers. Clin Microbiol Infect. 2019;26:340–4.
- Sato K, Sakakibara Y. MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Res. 2014;22:69–77.
- Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18.
- Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34:5623–30.
- 41. Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC bioinformatics. 2006;7:62.
- Dröge J, Gregor I, McHardy AC. *Taxator-tk*: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods. Bioinformatics. 2014;31:817–24.
- 43. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
- Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 2007;36:D250–4.
- 45. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80.
- Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8:e1002358.
- Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2013;42:D459–71.
- Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.
- 49. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
- 50. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
- Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, et al. CARD 2017: expansion and modelcentric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–d573.
- Bengtsson-Palme J, Rosenblad MA, Molin M, Blomberg A. Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics. 2014;15:749.
- Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2015;44: D279–85.
- Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC bioinformatics. 2010;11:431.

- Kaminski J, Gibson MK, Franzosa EA, Segata N, Dantas G, Huttenhower C. High-specificity targeted functional profiling in microbial communities with ShortBRED. PLoS Comput Biol. 2015;11:e1004557.
- Leplae R, Lima-Mendez G, Toussaint A. ACLAME: a CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res. 2010;38:D57–61.
- 57. Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.
- 58. Qin N, Liang P, Wu C, Wang G, Xu Q, Xiong X, Wang T, Zolfo M, Segata N, Qin H, Knight R, Gilbert JA, Zhu TF: Longitudinal survey of microbiome associated with particulate matter in a megacity. NCBI SRA. https://www. ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=486429 (2019).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Informativa sulla relazione tra inquinamento atmosferico e diffusione del COVID-19

In questi giorni è circolata una nota, a firma di alcuni ricercatori italiani, e diversi altri documenti sul web, che riportano una **presunta associazione tra inquinamento da particolato atmosferico (PM)** e diffusione del COVID-19. Questa ipotesi ha avuto un'ampia eco sui media e sui social e ha suscitato molto interesse, ponendo l'attenzione su una questione scientifica rilevante su cui lavorano moltissimi ricercatori in Italia ed all'estero. Considerazioni simili sono oggetto di discussione e diffusione nei social media.

La Società Italiana di Aerosol (IAS), fondata nel 2008 e membro della European Aerosol Assembly (EAA), annovera tra i suoi soci circa 150 ricercatori esperti sulle problematiche del particolato atmosferico provenienti da Università, Enti di Ricerca, Agenzie regionali e provinciali per la protezione ambientale e dal settore privato. In questa occasione, la IAS intende esprimere un parere sulle attuali conoscenze relative all'interazione tra livelli di inquinamento da PM e la diffusione del COVID-19. Queste conoscenze sono ancora molto limitate e ciò impone di utilizzare la massima cautela nell'interpretazione dei dati disponibili.

E' noto che l'esposizione, più o meno prolungata, ad alte concentrazioni di PM aumenta la suscettibilità a malattie respiratorie croniche e cardiovascolari e che questa condizione può peggiorare la situazione sanitaria dei contagiati. Queste alte concentrazioni sono frequentemente osservate nel nord Italia, soprattutto nella pianura Padana, durante il periodo invernale. Tuttavia, ad ora non è stato dimostrato alcun effetto di maggiore suscettibilità al contagio al COVID-19 dovuto all'esposizione alle polveri atmosferiche.

E' stato inoltre ipotizzato che il particolato atmosferico possa agire come substrato "carrier" per il trasporto del virus aumentando così il ritmo del contagio. Questo aspetto non è però confermato dalle conoscenze attualmente a disposizione, così come non sono ancora del tutto noti il tempo di vita del virus sulle superfici ed i fattori che lo influenzano. E' possibile che alcune condizioni meteorologiche, tipicamente presenti nel nord Italia in questo periodo, quali la bassa temperatura e l'elevata umidità atmosferica, possano creare un ambiente che favorisce la sopravvivenza del virus. Queste condizioni che, in genere, coincidono con una situazione di stabilità atmosferica intensa, favoriscono la formazione di particolato secondario e l'incremento della concentrazione del PM in prossimità del suolo. La covarianza fra condizioni di scarsa circolazione atmosferica, formazione di aerosol secondario, accumulo di PM in prossimità del suolo e diffusione del virus non deve, tuttavia, essere scambiata per un rapporto di causa-effetto. Nel caso di sistemi complessi come quello con cui abbiamo a che fare, l'interpretazione delle correlazioni semplici (cioè quella tra due serie temporali) non indica necessariamente un rapporto causa-effetto.

Allo stesso modo, si deve porre molta cautela, ad esempio, nel confrontare dati e trend provenienti da aree geografiche diverse del Paese e nel mescolare situazioni in cui esiste un focolaio con situazioni in cui il focolaio non è presente ed in cui sono state prese misure di contenimento diverse in tempi diversi. Il periodo di monitoraggio disponibile per l'indagine epidemiologica è ancora troppo limitato per trarre conclusioni scientificamente solide in relazione ai moltissimi fattori che influenzano il tasso di crescita del contagio.

Il Presidente, il Consiglio Direttivo della IAS e tutti i Soci firmatari sono unanimi nel valutare come parziale e prematura l'affermazione che esista un rapporto diretto tra numero di superamenti dei livelli di soglia del PM e contagi da COVID-19, e nel ritenere che un eventuale effetto dell'inquinamento da PM sul contagio da COVID-19 rimanga - allo stato attuale delle conoscenze - **una ipotesi che dovrà essere accuratamente valutata con indagini estese ed approfondite**. Nello stesso modo, **si ritiene che la proposta di misure restrittive di contenimento dell'inquinamento come mezzo per combattere il contagio sia, allo stato attuale delle conoscenze, ingiustificata**, anche se è indubbio che la riduzione delle emissioni antropiche, se mantenuta per lungo periodo, abbia effetti benefici sulla qualità dell'aria e sul clima e quindi sulla salute generale.

Si coglie l'occasione per sottolineare l'importanza di rispettare prioritariamente le distanze tra le persone e, in generale, le regole inserite nei Decreti e Ordinanze.

Le opinioni qui riportate sono da considerarsi personali dei firmatari e non rappresentano le posizioni ufficiali degli Enti di appartenenza.

Bologna, 20/03/2020

- Daniele Contini, Istituto di Scienze dell'Atmosfera e del Clima del CNR e Presidente della IAS
- Cinzia Perrino, Istituto sull'Inquinamento Atmosferico del CNR e Vice-Presidente della IAS
- Andrea Gambaro, Università Ca' Foscari di Venezia e membro del Consiglio Direttivo della IAS
- Maria Chiara Pietrogrande, Università degli Studi di Ferrara e membro del Consiglio Direttivo della IAS
- Stefano Decesari, Istituto di Scienze dell'Atmosfera e del Clima del CNR e membro del Consiglio Direttivo della IAS
- Cristina Colombi, Arpa Lombardia e membro del Consiglio Direttivo della IAS
- Silvia Canepari, Università degli studi di Roma "La Sapienza" e membro del Consiglio Direttivo della IAS
- Manuel Dall'Osto, Institute of Marine Sciences of CSIC (Spagna) e socio IAS
- Daniela Cesari, Istituto di Scienze dell'Atmosfera e del Clima del CNR e coordinatrice del Working Group "Tecniche di campionamento e analisi del PMx per la valutazione della qualità dell'aria" della IAS
- Luca Ferrero, Università degli Studi di Milano-Bicocca, coordinatore del Working Group "Aerosol atmosferico: proprietà, processi e cambiamenti atmosferici" della IAS
- Elena Barbaro, Istituto di Scienze Polari del CNR e coordinatrice del Working Group "Aerosol in aree polari e remote" della IAS.
- Adriana Pietrodangelo, Istituto sull'Inquinamento Atmosferico del CNR e coordinatrice del Working Group "Sorgenti e impatto ambientale degli aerosol" della IAS
- Mauro Maria Grosa, Arpa Piemonte e socio IAS
- Marianna Conte, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socia IAS

Società Italiana di Aerosol, c/o CNR Via Gobetti 101, 4019 Bologna – www.iasaerosol.it

- Maria Rachele Guascito, Università del Salento e socia IAS
- Eleonora Conca, Università degli Studi di Torino e socia IAS
- Ezio Bolzacchini, Università degli Studi di Milano-Bicocca e socio IAS
- Giulia Pavese, Istituto di Metodologie per l'Analisi Ambientale del CNR e socia IAS
- Erika Brattich, Alma Mater Studiorum Università di Bologna e socia IAS
- Rosaria Erika Pileci, Paul Scherrer Institute (Svizzera) e socia IAS
- Gabriele Curci, Gabriele Curci, Università degli Studi dell'Aquila e socio IAS
- Alessandro Bigi, Università degli Studi di Modena e Reggio Emilia e socio IAS
- Andrea Tapparo, Università degli Studi di Padova e socio IAS
- Francesco di Natale, Università degli Studi di Napoli "Federico II" e socio IAS
- Davide Michele Cappelletti, Università degli studi di Perugia e socio IAS
- Paolo Prati, Università degli Studi di Genova & INFN e socio IAS
- Roberta Vecchi, Università degli Studi di Milano & INFN-Milano e Past-President di IAS
- Sara Valentini, Università degli Studi di Milano & INFN-Milano e socia IAS
- Alice Corina Forello, Università degli Studi di Milano & INFN-Milano e socia IAS
- Paolo Brotto, CEO at PM_TEN srl e socio IAS
- Sandro Fuzzi, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socio IAS
- Maria Cristina Facchini, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socia IAS
- Rosa Caggiano, Istituto di Metodologie per l'Analisi Ambientale del CNR e socia IAS
- Andrea Algieri, Arpa Lombardia e socio IAS
- Adelaide Dinoi, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socia IAS
- Franco Belosi, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socio IAS
- Marco Paglione, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socio IAS
- Silvia Becagli, Università degli Studi di Firenze e socia IAS
- Federico Bianchi, University of Helsinki (Finlandia) e socio IAS
- Mery Malandrino, Università degli Studi di Torino e socia IAS
- Matteo Feltracco, Università Ca' Foscari di Venezia e socio IAS
- Franco Lucarelli, Università degli Studi di Firenze e socio IAS
- Giulia Calzolai, Istituto Nazionale di Fisica Nucleare e socia IAS
- Pierina Ielpo, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socia IAS
- Luca Tofful, Istituto sull'Inquinamento Atmosferico del CNR e socio IAS
- Eva Merico, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socia IAS

- Maurizio Gualtieri, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile ENEA SSPT-MET-INAT e socio IAS
- Mauro Morichetti, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socio IAS
- Vanes Poluzzi, ARPAE Emilia-Romagna socio collettivo IAS
- Luca Torreggiani, ARPAE Emilia-Romagna e socio IAS
- Francesca Marcovecchio, Istituto sull'Inquinamento Atmosferico del CNR e socia IAS
- Sara Pittavino, ARPA Valle d'Aosta e socia IAS
- Mariarosaria Calvello, Istituto di Metodologie per l'Analisi Ambientale del CNR e socia IAS
- Massimo Chiari, Istituto Nazionale di Fisica Nucleare e socio IAS
- Maria Agostina Frezzini, Università degli studi di Roma "La Sapienza" e socia IAS
- Francesco Esposito, Università degli Studi della Basilicata e socio IAS
- Matteo Monticelli, Managing Director POLLUTION Analytical Equipment socio collettivo IAS
- Carlo Giglioni, Amministratore Con.Tec. Engineering SRL socio collettivo IAS
- Stefano Alberti, Amministratore Dado Lab SRL socio collettivo IAS
- Lorenzo Massimi, Università degli studi di Roma "La Sapienza" e socio IAS
- Silvia Nava, Università di Firenze & INFN-Firenze e socia IAS
- Salvatore Romano, Università del Salento e socio IAS
- Maria Giulia Lionetto, Università del Salento e socio IAS
- Luca D'Angelo, ARPA Lombardia e socio IAS
- Federica Castellani, Università degli studi di Roma "La Sapienza" e socia IAS
- Maria Luisa Astolfi, Università degli studi di Roma "La Sapienza" e socia IAS
- Antonio Donateo, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socio IAS
- Gianluca Pappacogli, Istituto di Scienze dell'Atmosfera e del Clima del CNR e socio IAS
- Guido Pirovano, Ricerca sul Sistema Energetico (RSE SpA) e socio IAS
- Chiara Giorio, University of Cambridge (Regno Unito) e socio IAS